Review of thermal interface materials for microelectronic packaging
-
摘要:
随着半导体器件向着微型化、髙度集成化及高功率密度方向发展,其发热量急剧增大,热失效已经成为阻碍微电子封装器件性能和寿命的首要问题. 高性能的热管理材料能有效提高微电子封装内部元器件散热能力,其中封装结构散热路径上的热界面材料(Thermal Interface Material,TIM)便是热管理中至关重要的环节. 通过热界面材料填充器件热源和散热单元之间的空隙,可以大幅度降低接触热阻, 增加热量的传递效率. 对微电子封装而言,高性能的热界面材料不仅需要高的导热系数以降低封装热阻,还需具备一定的压缩性以弥补封装的装配偏差,然而通常很难兼顾上述两种特性. 本文重点关注微电子封装中热界面材料,系统地梳理了目前热界面材料的常见类型、应用存在问题、关注研究热点和国内外发展现状.
Abstract:With the development of semiconductor devices toward miniaturization, high integration and high power density, the calorific value increases sharply. Thermal failure becomes the primary problem hindering the performance and life of microelectronic devices. High-performance thermal management materials can effectively help microelectronic components to dissipate heat. The thermal interface material (TIM) on the heat dissipation path of packaging structure is a crucial part in the thermal management. By filling the gap between the heat source and the cooling unit, TIM can reduce the contact thermal resistance and improve heat transfer efficiency. For microelectronic packaging, high-performance thermal interface materials not only need high thermal conductivity to reduce the thermal resistance of packaging, but also need a certain compressibility to make up for the assembly deviation of packaging. However, it is often difficult to take into account the above two characteristics. This paper focuses on the thermal interface material in microelectronics packaging, systematically summarizes the common types of thermal interface materials, existing problems in application, research hotspots and development status at home and abroad.
-
图 3 Rtot随 BLT线性变化曲线[7]
Figure 3. Plots of Rtot versus BLT for different TIMs
图 4 稳态法测试系统框架图[61]
Figure 4. Steady-state test frame diagram system
Type Thermal conductivity/
Wm?1 K?1BLT/pm Thermal interface
resistance /Km2 W?1Pump-out Absorbs stress Reusable Replaceability Thermal grease 0.4~4 20-150 10~200 Yes Well No Medium Thermal pad 0.8~3 200~1000 100~300 No Well Yes Excellent Phase change material 0.7~1.5 20~150 30~70 Yes Well No Medium Thermal gel 2~5 75-250 40~80 No Medium No Medium Thermally conductive adhesive 1~2 50~200 15~100 No Medium No Poor Solder 20~80 25-200 <5 No Poorly No Poor -
[1] CUI Y, LI M, HU Y J. Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities[J]. Journal of Materials Chemistry C,2020,8(31):10568-10586. DOI: 10.1039/C9TC05415D. [2] LIU Z D, CHEN Y P, LI Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale,2019,11(38):17600-17606. DOI: 10.1039/c9nr03968f. [3] JIANG F, CUI S Q, RUNGNIM C, et al. Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites[J]. Chemistry of Materials,2019,31(18):7686-7695. DOI: 10.1021/acs.chemmater.9b02551. [4] 何鹏, 耿慧远. 先进热管理材料研究进♂展[J]. 材料工程,2018,46(4):1-11. DOI: 10.11868/j.issn.1001-4381.2017.001194.HE P, GENG H Y. Research progress of advanced thermal management materials[J]. Journal of Materials Engineering,2018,46(4):1-11. DOI: 10.11868/j.issn.1001-4381.2017.001194. [5] YANG G, YI H K, YAO Y G, et al. Thermally conductive graphene films for heat dissipation[J]. ACS Applied Nano Materials,2020,3(3):2149-2155. DOI: 10.1021/acsanm.9b01955. [6] ZHOU Y C, WU S Q, LONG Y H, et al. Recent advances in thermal interface materials[J]. ES Materials & Manufacturing,2020,7:4-24. DOI: 10.30919/esmm5f717. [7] 袁超, 段斌, 李岚, 等. 热界面材料热导率★和接触热阻的测试[J]. 化工学报,2015,66(S1):349-353. DOI: 10.11949/j.issn.0438-1157.20150273.YUAN C, DUAN B, LI L, et al. Thermal conductivity and contact resistance measurements for thermal interface materials[J]. CIESC Journal,2015,66(S1):349-353. DOI: 10.11949/j.issn.0438-1157.20150273. [8] HANSSON J, NILSSON T M J, YE L L, et al. Novel nanostructured thermal interface materials: a review[J]. International Materials Reviews,2018,63(1):22-45. DOI: 10.1080/09506608.2017.1301014. [9] SARVAR F, WHALLEY D C, CONWAY P P. Thermal interface materials—a review of the state of the art[C]//2006 1st Electronic Systemintegration Technology Conference. Dresden, Germany: IEEE, 2006: 1292-1302. [10] S?HL S, EISELE R. Impact of the Pump-Out-Effect on the thermal long-term behaviour of power electronic modules[J]. Microelectronics Reliability,2019,100-101:113479. DOI: 10.1016/j.microrel.2019.113479. [11] 朱晴. 高导热热界面材料的制备及其导热性能研究[D]. 青岛: 青岛科技大学, 2019.ZHU Q. Preparation and properties of thermal interface materials with high conductivity[D]. Qingdao: Qingdao University of Science and Technology, 2019. [12] NARUMANCHI S, MIHALIC M, KELLY K, et al. Thermal interface materials for power electronics applications[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL, USA: IEEE, 2008: 395-404. [13] VISWANATH R, WAKHARKAR V, WATWE A, et al. Thermal performance challenges from silicon to systems[J]. Intel Technology Journal,2000:1-16. [14] BLAZEJ D. Thermal interface materials[EB/OL]. (2003-12-01). . [15] TONG X C. Advanced materials for thermal management of electronic packaging[M]. New York: Springer, 2011. [16] MAGUIRE L, BEHNIA M, MORRISON G. Systematic evaluation of thermal interface materials—a case study in high power amplifier design[J]. Microelectronics Reliability,2005,45(3-4):711-725. DOI: 10.1016/j.microrel.2004.10.030. [17] EKPU M, BHATTI R, EKERE N, et al. Effects of thermal interface materials (solders) on thermal performance of a microelectronic package[C]//2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS. Cannes, France: IEEE, 2012: 154-159. [18] WILSON J. Thermal conductivity of solders[EB/OL]. (2006-08-01). . [19] EMERSON J A, RIGHTLEY M J, GALLOWAY J A, et al. Minimizing the bondline thermal resistance in thermal interface materials without affecting reliability[J]. 2005. [20] PRASHER R S, MATAYABAS J C. Thermal contact resistance of cured gel polymeric thermal interface material[J]. IEEE Transactions on Components and Packaging Technologies,2004,27(4):702-709. DOI: 10.1109/TCAPT.2004.838883. [21] Gap Pad Products[EB/OL]. (2016). . [22] DE SORGO M. Understanding phase change materials[EB/OL]. (2002-05-01). . [23] Thermally conductive adhesives & potting compounds. (2016). . [24] 冯梅玲. 导热硅脂的研究进展[J]. 有机∩硅材料,2016,30(5):417-423. DOI: 10.11941/j.issn.1009-4369.2016.05.015.FENG M L. Research progress of thermal conductive silicone grease[J]. Silicone Material,2016,30(5):417-423. DOI: 10.11941/j.issn.1009-4369.2016.05.015. [25] 刘长青, 陈茂, 于伟. 热界面材料的研究进展[J]. 中国基础科学,2018,20(3):13-27. DOI: 10.3969/j.issn.1009-2412.2018.03.004.LIU C Q, CHEN M, YU W. Progress in the research of thermal interface materials[J]. China Basic Science,2018,20(3):13-27. DOI: 10.3969/j.issn.1009-2412.2018.03.004. [26] 裴昌龙, 陈清, 钟桂云, 等. 导热有机硅封装胶的研究◥进展[J]. 化工新型材料,2012,40(3):1-3. DOI: 10.3969/j.issn.1006-3536.2012.03.001.PEI C L, CHEN Q, ZHONG G Y, et al. Advancement of thermal conductivity silicone encapsulation[J]. New Chemical Materials,2012,40(3):1-3. DOI: 10.3969/j.issn.1006-3536.2012.03.001. [27] 史剑, 吴晓琳, 符显珠, 等. 相变热界面材料研究进展[J]. 材料导报,2015,29(S1):151-156.SHI J, WU X L, FU X Z, et al. Research progress of phase change thermal interface materials[J]. Materials Reports,2015,29(S1):151-156. [28] 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报,2020,42(11):1422-1432. DOI: 10.13374/j.issn2095-9389.2020.03.26.002.LI X H, CHEN M Z, ZHOU X Y. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering,2020,42(11):1422-1432. DOI: 10.13374/j.issn2095-9389.2020.03.26.002. [29] ROY C K, BHAVNANI S, HAMILTON M C, et al. Thermal performance of low melting temperature alloys at the interface between dissimilar materials[J]. Applied Thermal Engineering,2016,99:72-79. DOI: 10.1016/j.applthermaleng.2016.01.036. [30] WEBB R L, GWINN J P. Low melting point thermal interface material[C]//ITHERM 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. San Diego, CA, USA: IEEE, 2002: 671-676. [31] HAMDAN A, MCLANAHAN A, RICHARDS R, et al. Characterization of a liquid-metal microdroplet thermal interface material[J]. Experimental Thermal and Fluid Science,2011,35(7):1250-1254. DOI: 10.1016/j.expthermflusci.2011.04.012. [32] HILL R F, STRADER J L. Practical utilization of low melting alloy thermal interface materials[C]//Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Dallas, TX, USA: IEEE, 2006: 23-27. [33] PRASHER R. Thermal interface materials: historical perspective, status, and future directions[J]. Proceedings of the IEEE,2006,94(8):1571-1586. DOI: 10.1109/JPROC.2006.879796. [34] 周涛, 汤姆·鲍勃, 马丁·奥德, 等. 金锡焊料及其在电子器件封装领域中的应用[J]. 电子与封装,2005,5(8):5-8. DOI: 10.3969/j.issn.1681-1070.2005.08.003.ZHOU T, BOBAL T, OUD M, et al. An introduction to eutectic Au/Sn solder alloy and its Preforms in microelectronics/optoelectronic packaging applications[J]. Electronics & Packaging,2005,5(8):5-8. DOI: 10.3969/j.issn.1681-1070.2005.08.003. [35] 杨小虎, 刘静. 液态∮金属高性能冷却技术: 发展历程与研究前沿[J]. 科技导报,2018,36(15):54-66. DOI: 10.3981/j.issn.1000-7857.2018.15.007.YANG X H, LIU J. Advanced liquid metal cooling: historical developments and research frontiers[J]. Science & Technology Review,2018,36(15):54-66. DOI: 10.3981/j.issn.1000-7857.2018.15.007. [36] 王梦婕. 液态金属基和硅橡胶基热↘界面材料的制备及其导热性能研究[D]. 青岛: 青岛科技大学, 2018.WANG M J. Preparation and thermal conductivity of liquid metal-based and silicone-based thermal interface materials[D]. Qingdao: Qingdao University of Science and Technology, 2018. [37] ROY C K, BHAVNANI S, HAMILTON M C, et al. Investigation into the application of low melting temperature alloys as wet thermal interface materials[J]. International Journal of Heat and Mass Transfer,2015,85:996-1002. DOI: 10.1016/j.ijheatmasstransfer.2015.02.029. [38] 洪浩群, 周超, 肖扬, 等. 导热高分子复合材料的研究进展[J]. 中国科技论文在线精品论文,2016,9(24):2489-2502.HONG H Q, ZHOU C, XIAO Y, et al. Progress in thermal conductive polymer composites[J]. Highlights of Sciencepaper Online,2016,9(24):2489-2502. [39] FENG C P, YANG L Y, YANG J, et al. Recent advances in polymer-based thermal interface materials for thermal management: a mini-review[J]. Composites Communications,2020,22:100528. DOI: 10.1016/j.coco.2020.100528. [40] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. DOI: 10.1021/nl0731872. [41] WANG Z G, LV J C, ZHENG Z L, et al. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling[J]. ACS Applied Materials & Interfaces,2021,13(21):25325-25333. DOI: 10.1021/acsami.1c01223. [42] 李岳, 李炯利, 朱巧思, 等. 石墨烯导热材料研究进展[J]. 材料工程,2021,49(11):1-13. DOI: 10.11868/j.issn.1001-4381.2020.000935.LI Y, LI J L, ZHU Q S, et al. Research progress in graphene based thermal conductivity materials[J]. Journal of Materials Engineering,2021,49(11):1-13. DOI: 10.11868/j.issn.1001-4381.2020.000935. [43] 于伟, 谢华清, 陈立飞, 等. 石墨烯在强化传热领域的研究进展[J]. 科技导报,2015,33(5):39-45. DOI: 10.3981/j.issn.1000-7857.2015.05.005.YU W, XIE H Q, CHEN L F, et al. Recent progress of graphene researches in enhanced heat transfer fields[J]. Science & Technology Review,2015,33(5):39-45. DOI: 10.3981/j.issn.1000-7857.2015.05.005. [44] 尚玉, 张东. 石墨烯基界面导热材料的研究现状[J]. 功能材料,2013,44(22):3219-3224. DOI: 10.3969/j.issn.1001-9731.2013.22.002.SHANG Y, ZHANG D. Research status of graphene-based thermal interface material[J]. Journal of Functional Materials,2013,44(22):3219-3224. DOI: 10.3969/j.issn.1001-9731.2013.22.002. [45] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters,2001,87(21):215502. DOI: 10.1103/PhysRevLett.87.215502. [46] POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6(1):96-100. DOI: 10.1021/nl052145f. [47] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J]. Progress in Polymer Science,2011,36(7):914-944. DOI: 10.1016/j.progpolymsci.2010.11.004. [48] LI Q W, LIU C H, FAN S S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers[J]. Nano Letters,2009,9(11):3805-3809. DOI: 10.1021/nl901988t. [49] BARANI Z, MOHAMMADZADEH A, GEREMEW A, et al. Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles[J]. Advanced Functional Materials,2020,30(8):1904008. DOI: 10.1002/adfm.201904008. [50] LOEBLEIN M, TSANG S H, PAWLIK M, et al. High-density 3D-boron nitride and 3D-graphene for high-performance Nano-thermal interface material[J]. ACS Nano,2017,11(2):2033-2044. DOI: 10.1021/acsnano.6b08218. [51] ZAHID M, MASOOD M T, ATHANASSIOU A, et al. Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets[J]. Applied Physics Letters,2018,113(4):044103. DOI: 10.1063/1.5044719. [52] LI S, ZHENG Q Y, LV Y C, et al. High thermal conductivity in cubic boron arsenide crystals[J]. Science,2018,361(6402):579-581. DOI: 10.1126/science.aat8982. [53] ZENG X L, SUN J J, YAO Y M, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano,2017,11(5):5167-5178. DOI: 10.1021/acsnano.7b02359. [54] ZOU D X, HUANG X Y, ZHU Y K, et al. Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability[J]. Composites Science and Technology,2019,177:88-95. DOI: 10.1016/j.compscitech.2019.04.027. [55] HE X H, WANG Y C. Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties[J]. Industrial & Engineering Chemistry Research,2020,59(5):1925-1933. DOI: 10.1021/acs.iecr.9b05939. [56] GAO Y X, WANG X P, LIU J, et al. Investigation on the optimized binary and ternary gallium alloy as thermal interface materials[J]. Journal of Electronic Packaging,2017,139(1):011002. DOI: 10.1115/1.4035025. [57] DAI W, LV L, MA T F, et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J]. Advanced Science,2021,8(7):2003734. DOI: 10.1002/advs.202003734. [58] GWINN J P, WEBB R L. Performance and testing of thermal interface materials[J]. Microelectronics Journal,2003,34(3):215-222. DOI: 10.1016/S0026-2692(02)00191-X. [59] SPONAGLE B, GROULX D. Measurement of thermal interface conductance at variable clamping pressures using a steady state method[J]. Applied Thermal Engineering,2016,96:671-681. DOI: 10.1016/j.applthermaleng.2015.12.010. [60] ASTM. ASTM D5470-12 Standard test method for thermal transmission properties of thermally conductive electrical insulation materials[S]. ASTM, [61] KEMPERS R, KOLODNER P, LYONS A, et al. A high-precision apparatus for the characterization of thermal interface materials[J]. The Review of Scientific Instruments,2009,80(9):095111. DOI: 10.1063/1.3193715. [62] BURG B R, KOLLY M, BLASAKIS N, et al. Steady-state low thermal resistance characterization apparatus: the bulk thermal tester[J]. Review of Scientific Instruments,2015,86(12):124903. DOI: 10.1063/1.4936766. [63] STREB F, SCHWEITZER D, MENGEL M, et al. Evaluation of characterization methods for solid thermal interface materials[C]//2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). San Jose, CA, USA: IEEE, 2017: 269-277. -