--> -->

  • <tr id='ARdfm1'><strong id='ARdfm1'></strong><small id='ARdfm1'></small><button id='ARdfm1'></button><li id='ARdfm1'><noscript id='ARdfm1'><big id='ARdfm1'></big><dt id='ARdfm1'></dt></noscript></li></tr><ol id='ARdfm1'><option id='ARdfm1'><table id='ARdfm1'><blockquote id='ARdfm1'><tbody id='ARdfm1'></tbody></blockquote></table></option></ol><u id='ARdfm1'></u><kbd id='ARdfm1'><kbd id='ARdfm1'></kbd></kbd>

    <code id='ARdfm1'><strong id='ARdfm1'></strong></code>

    <fieldset id='ARdfm1'></fieldset>
          <span id='ARdfm1'></span>

              <ins id='ARdfm1'></ins>
              <acronym id='ARdfm1'><em id='ARdfm1'></em><td id='ARdfm1'><div id='ARdfm1'></div></td></acronym><address id='ARdfm1'><big id='ARdfm1'><big id='ARdfm1'></big><legend id='ARdfm1'></legend></big></address>

              <i id='ARdfm1'><div id='ARdfm1'><ins id='ARdfm1'></ins></div></i>
              <i id='ARdfm1'></i>
            1. <dl id='ARdfm1'></dl>
              1. <blockquote id='ARdfm1'><q id='ARdfm1'><noscript id='ARdfm1'></noscript><dt id='ARdfm1'></dt></q></blockquote><noframes id='ARdfm1'><i id='ARdfm1'></i>
                • 北♀大核心期刊(《中文核心期刊要目总览》2017版)
                • 中国科技核心期刊(中国科技论∩文统计源期刊)
                • JST 日本科学技术振兴机构数据库(日)收录期刊

                留言板

                尊敬的¤读者、作者、审稿人, 关于本刊的投稿←、审稿、编辑和出版的⌒ 任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

                姓名
                邮箱
                手机号码
                标题
                留言内容
                验证码

                微电子封装热界面材料研究综述

                杨宇军 李逵 石钰林 焦斌斌 张志祥 匡乃亮

                杨宇军,李逵,石钰林,等.微电子封装热界面材料研究综述[J]. 微电子学与计算机,2023,40(1):64-74 doi: 10.19304/J.ISSN1000-7180.2022.0684
                引用本文: 杨宇军,李逵,石钰林,等.微电子封装热界面材料研究综述[J]. 微电子学与计算机,2023,40(1):64-74 doi: 10.19304/J.ISSN1000-7180.2022.0684
                YANG Y J,LI K,SHI Y L,et al. Review of thermal interface materials for microelectronic packaging[J]. Microelectronics & Computer,2023,40(1):64-74 doi: 10.19304/J.ISSN1000-7180.2022.0684
                Citation: YANG Y J,LI K,SHI Y L,et al. Review of thermal interface materials for microelectronic packaging[J]. Microelectronics & Computer,2023,40(1):64-74 doi: 10.19304/J.ISSN1000-7180.2022.0684

                微电子封装热界面材料研究综述

                doi: 10.19304/J.ISSN1000-7180.2022.0684
                详细信息
                  作者简介:

                  杨宇军:男,(1972-),博士,研究员,博士生】导师. 研究方向为微系统环境适应性

                  石钰林:男,(1998-),硕士研究生. 研究方向为低结壳热阻芯片关键封装技术

                  焦斌斌:男,(1981-),博士,研究员,博士生导♀师. 研究方向为MEMS与微系统技术

                  张志祥:男,(1994-),硕士研究生,工程师. 研究方『向为微系统散热管理技术

                  匡乃亮:男,(1982-),硕士,高级工↘程师. 研究方向为微系统集成㊣ 技术

                  通讯作者:

                  男,(1987-),硕士,高级工程师. 研究方向为微系统散热和结构工艺可靠性.E-mail: likui285@sina.com

                • 中图分类号: TN47

                Review of thermal interface materials for microelectronic packaging

                • 摘要:

                  随着半导体器件向着微型化、髙度集成化及高功率密度方向发展,其发热量急剧增大,热失效↑已经成为阻碍微电子封装器件性能和寿命的首要问题. 高性能的热管理材料能有效提高微电子封装内部元器件散热能力,其中封装结构散热路径上的热界面材料(Thermal Interface Material,TIM)便是〖热管理中至关重要的环节. 通过热界面材料填充器件热源和散热单元之间的空隙,可以大幅度降低接触热阻, 增加热量的传递效率. 对微电子封装而言,高性╳能的热界面材料不仅需要高的导热系数以降低封装热阻,还需具备一定的压缩性以弥补封装的装配偏差,然而通常很难兼顾上述两种特性. 本文重点关注微电子封装中热界面材料,系统♀地梳理了目前热界面材料的常见类型、应用存在问题、关注研究热点和国内外发展现状.

                   

                • 图 1  实际热界面状态及热流方向上热阻示意图

                  Figure 1.  Schematic diagram of the real thermal interface status and thermal resistance components

                  图 2  典型微电子封装器件散热路径

                  Figure 2.  Heat dissipation path of microelectronic packaging components

                  图 3  Rtot随 BLT线性变化曲线[7]

                  Figure 3.  Plots of Rtot versus BLT for different TIMs

                  图 4  稳态法测试系统框架图[61]

                  Figure 4.  Steady-state test frame diagram system

                  图 5  瞬态平面热源法测试结构

                  Figure 5.  The test structure of transient plane heat source method

                  表  1  常见TIM类型和典型特性[11-23]

                  Table  1.   Common TIM types and typical characteristics

                  TypeThermal conductivity/
                  Wm?1 K?1
                  BLT/pmThermal interface
                  resistance /Km2 W?1
                  Pump-outAbsorbs stressReusableReplaceability
                  Thermal grease 0.4~4 20-150 10~200 Yes Well No Medium
                  Thermal pad 0.8~3 200~1000 100~300 No Well Yes Excellent
                  Phase change material 0.7~1.5 20~150 30~70 Yes Well No Medium
                  Thermal gel 2~5 75-250 40~80 No Medium No Medium
                  Thermally conductive adhesive 1~2 50~200 15~100 No Medium No Poor
                  Solder 20~80 25-200 <5 No Poorly No Poor
                  下载: 导出CSV
                • [1] CUI Y, LI M, HU Y J. Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities[J]. Journal of Materials Chemistry C,2020,8(31):10568-10586. DOI: 10.1039/C9TC05415D.
                  [2] LIU Z D, CHEN Y P, LI Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale,2019,11(38):17600-17606. DOI: 10.1039/c9nr03968f.
                  [3] JIANG F, CUI S Q, RUNGNIM C, et al. Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites[J]. Chemistry of Materials,2019,31(18):7686-7695. DOI: 10.1021/acs.chemmater.9b02551.
                  [4] 何鹏, 耿慧远. 先进热管理材料研究进展[J]. 材料工程,2018,46(4):1-11. DOI: 10.11868/j.issn.1001-4381.2017.001194.

                  HE P, GENG H Y. Research progress of advanced thermal management materials[J]. Journal of Materials Engineering,2018,46(4):1-11. DOI: 10.11868/j.issn.1001-4381.2017.001194.
                  [5] YANG G, YI H K, YAO Y G, et al. Thermally conductive graphene films for heat dissipation[J]. ACS Applied Nano Materials,2020,3(3):2149-2155. DOI: 10.1021/acsanm.9b01955.
                  [6] ZHOU Y C, WU S Q, LONG Y H, et al. Recent advances in thermal interface materials[J]. ES Materials & Manufacturing,2020,7:4-24. DOI: 10.30919/esmm5f717.
                  [7] 袁超, 段斌, 李岚, 等. 热界面材料热导率和接触热阻的测试[J]. 化工学报,2015,66(S1):349-353. DOI: 10.11949/j.issn.0438-1157.20150273.

                  YUAN C, DUAN B, LI L, et al. Thermal conductivity and contact resistance measurements for thermal interface materials[J]. CIESC Journal,2015,66(S1):349-353. DOI: 10.11949/j.issn.0438-1157.20150273.
                  [8] HANSSON J, NILSSON T M J, YE L L, et al. Novel nanostructured thermal interface materials: a review[J]. International Materials Reviews,2018,63(1):22-45. DOI: 10.1080/09506608.2017.1301014.
                  [9] SARVAR F, WHALLEY D C, CONWAY P P. Thermal interface materials—a review of the state of the art[C]//2006 1st Electronic Systemintegration Technology Conference. Dresden, Germany: IEEE, 2006: 1292-1302.
                  [10] S?HL S, EISELE R. Impact of the Pump-Out-Effect on the thermal long-term behaviour of power electronic modules[J]. Microelectronics Reliability,2019,100-101:113479. DOI: 10.1016/j.microrel.2019.113479.
                  [11] 朱晴. 高导热热界面材料的制备及⊙其导热性能研究[D]. 青岛: 青岛科技大学, 2019.

                  ZHU Q. Preparation and properties of thermal interface materials with high conductivity[D]. Qingdao: Qingdao University of Science and Technology, 2019.
                  [12] NARUMANCHI S, MIHALIC M, KELLY K, et al. Thermal interface materials for power electronics applications[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL, USA: IEEE, 2008: 395-404.
                  [13] VISWANATH R, WAKHARKAR V, WATWE A, et al. Thermal performance challenges from silicon to systems[J]. Intel Technology Journal,2000:1-16.
                  [14] BLAZEJ D. Thermal interface materials[EB/OL]. (2003-12-01). .
                  [15] TONG X C. Advanced materials for thermal management of electronic packaging[M]. New York: Springer, 2011.
                  [16] MAGUIRE L, BEHNIA M, MORRISON G. Systematic evaluation of thermal interface materials—a case study in high power amplifier design[J]. Microelectronics Reliability,2005,45(3-4):711-725. DOI: 10.1016/j.microrel.2004.10.030.
                  [17] EKPU M, BHATTI R, EKERE N, et al. Effects of thermal interface materials (solders) on thermal performance of a microelectronic package[C]//2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS. Cannes, France: IEEE, 2012: 154-159.
                  [18] WILSON J. Thermal conductivity of solders[EB/OL]. (2006-08-01). .
                  [19] EMERSON J A, RIGHTLEY M J, GALLOWAY J A, et al. Minimizing the bondline thermal resistance in thermal interface materials without affecting reliability[J]. 2005.
                  [20] PRASHER R S, MATAYABAS J C. Thermal contact resistance of cured gel polymeric thermal interface material[J]. IEEE Transactions on Components and Packaging Technologies,2004,27(4):702-709. DOI: 10.1109/TCAPT.2004.838883.
                  [21] Gap Pad Products[EB/OL]. (2016). .
                  [22] DE SORGO M. Understanding phase change materials[EB/OL]. (2002-05-01). .
                  [23] Thermally conductive adhesives & potting compounds. (2016). .
                  [24] 冯梅玲. 导热▅硅脂的研究进展[J]. 有机硅材料,2016,30(5):417-423. DOI: 10.11941/j.issn.1009-4369.2016.05.015.

                  FENG M L. Research progress of thermal conductive silicone grease[J]. Silicone Material,2016,30(5):417-423. DOI: 10.11941/j.issn.1009-4369.2016.05.015.
                  [25] 刘长青, 陈茂, 于伟. 热界面材料的研究进展[J]. 中╲国基础科学,2018,20(3):13-27. DOI: 10.3969/j.issn.1009-2412.2018.03.004.

                  LIU C Q, CHEN M, YU W. Progress in the research of thermal interface materials[J]. China Basic Science,2018,20(3):13-27. DOI: 10.3969/j.issn.1009-2412.2018.03.004.
                  [26] 裴昌龙, 陈清, 钟桂云, 等. 导热有※机硅封装胶的研究进展[J]. 化工新型材料,2012,40(3):1-3. DOI: 10.3969/j.issn.1006-3536.2012.03.001.

                  PEI C L, CHEN Q, ZHONG G Y, et al. Advancement of thermal conductivity silicone encapsulation[J]. New Chemical Materials,2012,40(3):1-3. DOI: 10.3969/j.issn.1006-3536.2012.03.001.
                  [27] 史剑, 吴晓琳, 符显珠, 等. 相变热界面材料研究进展[J]. 材料导报,2015,29(S1):151-156.

                  SHI J, WU X L, FU X Z, et al. Research progress of phase change thermal interface materials[J]. Materials Reports,2015,29(S1):151-156.
                  [28] 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报,2020,42(11):1422-1432. DOI: 10.13374/j.issn2095-9389.2020.03.26.002.

                  LI X H, CHEN M Z, ZHOU X Y. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering,2020,42(11):1422-1432. DOI: 10.13374/j.issn2095-9389.2020.03.26.002.
                  [29] ROY C K, BHAVNANI S, HAMILTON M C, et al. Thermal performance of low melting temperature alloys at the interface between dissimilar materials[J]. Applied Thermal Engineering,2016,99:72-79. DOI: 10.1016/j.applthermaleng.2016.01.036.
                  [30] WEBB R L, GWINN J P. Low melting point thermal interface material[C]//ITHERM 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. San Diego, CA, USA: IEEE, 2002: 671-676.
                  [31] HAMDAN A, MCLANAHAN A, RICHARDS R, et al. Characterization of a liquid-metal microdroplet thermal interface material[J]. Experimental Thermal and Fluid Science,2011,35(7):1250-1254. DOI: 10.1016/j.expthermflusci.2011.04.012.
                  [32] HILL R F, STRADER J L. Practical utilization of low melting alloy thermal interface materials[C]//Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Dallas, TX, USA: IEEE, 2006: 23-27.
                  [33] PRASHER R. Thermal interface materials: historical perspective, status, and future directions[J]. Proceedings of the IEEE,2006,94(8):1571-1586. DOI: 10.1109/JPROC.2006.879796.
                  [34] 周涛, 汤姆·鲍勃, 马丁·奥德, 等. 金锡焊料及其在电子器件封装领域中的应用[J]. 电子与封装,2005,5(8):5-8. DOI: 10.3969/j.issn.1681-1070.2005.08.003.

                  ZHOU T, BOBAL T, OUD M, et al. An introduction to eutectic Au/Sn solder alloy and its Preforms in microelectronics/optoelectronic packaging applications[J]. Electronics & Packaging,2005,5(8):5-8. DOI: 10.3969/j.issn.1681-1070.2005.08.003.
                  [35] 杨小虎, 刘静. 液态ξ 金属高性能冷却技术: 发展历程与研究前沿[J]. 科技导报,2018,36(15):54-66. DOI: 10.3981/j.issn.1000-7857.2018.15.007.

                  YANG X H, LIU J. Advanced liquid metal cooling: historical developments and research frontiers[J]. Science & Technology Review,2018,36(15):54-66. DOI: 10.3981/j.issn.1000-7857.2018.15.007.
                  [36] 王梦婕. 液态金属基和硅橡胶基热界面材料的『制备及其导热性能研究[D]. 青岛: 青岛科技大学, 2018.

                  WANG M J. Preparation and thermal conductivity of liquid metal-based and silicone-based thermal interface materials[D]. Qingdao: Qingdao University of Science and Technology, 2018.
                  [37] ROY C K, BHAVNANI S, HAMILTON M C, et al. Investigation into the application of low melting temperature alloys as wet thermal interface materials[J]. International Journal of Heat and Mass Transfer,2015,85:996-1002. DOI: 10.1016/j.ijheatmasstransfer.2015.02.029.
                  [38] 洪浩群, 周超, 肖扬, 等. 导热高分子复合材料的研究进展[J]. 中国科技论文在线精品论文,2016,9(24):2489-2502.

                  HONG H Q, ZHOU C, XIAO Y, et al. Progress in thermal conductive polymer composites[J]. Highlights of Sciencepaper Online,2016,9(24):2489-2502.
                  [39] FENG C P, YANG L Y, YANG J, et al. Recent advances in polymer-based thermal interface materials for thermal management: a mini-review[J]. Composites Communications,2020,22:100528. DOI: 10.1016/j.coco.2020.100528.
                  [40] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. DOI: 10.1021/nl0731872.
                  [41] WANG Z G, LV J C, ZHENG Z L, et al. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling[J]. ACS Applied Materials & Interfaces,2021,13(21):25325-25333. DOI: 10.1021/acsami.1c01223.
                  [42] 李岳, 李炯利, 朱巧思, 等. 石墨烯导热材料研究进展[J]. 材料工程,2021,49(11):1-13. DOI: 10.11868/j.issn.1001-4381.2020.000935.

                  LI Y, LI J L, ZHU Q S, et al. Research progress in graphene based thermal conductivity materials[J]. Journal of Materials Engineering,2021,49(11):1-13. DOI: 10.11868/j.issn.1001-4381.2020.000935.
                  [43] 于伟, 谢华清, 陈立飞, 等. 石墨烯在强化传热领域的研▓究进展[J]. 科技导报,2015,33(5):39-45. DOI: 10.3981/j.issn.1000-7857.2015.05.005.

                  YU W, XIE H Q, CHEN L F, et al. Recent progress of graphene researches in enhanced heat transfer fields[J]. Science & Technology Review,2015,33(5):39-45. DOI: 10.3981/j.issn.1000-7857.2015.05.005.
                  [44] 尚玉, 张东. 石墨烯基界面导热材料的研究现状[J]. 功能材料,2013,44(22):3219-3224. DOI: 10.3969/j.issn.1001-9731.2013.22.002.

                  SHANG Y, ZHANG D. Research status of graphene-based thermal interface material[J]. Journal of Functional Materials,2013,44(22):3219-3224. DOI: 10.3969/j.issn.1001-9731.2013.22.002.
                  [45] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters,2001,87(21):215502. DOI: 10.1103/PhysRevLett.87.215502.
                  [46] POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6(1):96-100. DOI: 10.1021/nl052145f.
                  [47] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J]. Progress in Polymer Science,2011,36(7):914-944. DOI: 10.1016/j.progpolymsci.2010.11.004.
                  [48] LI Q W, LIU C H, FAN S S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers[J]. Nano Letters,2009,9(11):3805-3809. DOI: 10.1021/nl901988t.
                  [49] BARANI Z, MOHAMMADZADEH A, GEREMEW A, et al. Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles[J]. Advanced Functional Materials,2020,30(8):1904008. DOI: 10.1002/adfm.201904008.
                  [50] LOEBLEIN M, TSANG S H, PAWLIK M, et al. High-density 3D-boron nitride and 3D-graphene for high-performance Nano-thermal interface material[J]. ACS Nano,2017,11(2):2033-2044. DOI: 10.1021/acsnano.6b08218.
                  [51] ZAHID M, MASOOD M T, ATHANASSIOU A, et al. Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets[J]. Applied Physics Letters,2018,113(4):044103. DOI: 10.1063/1.5044719.
                  [52] LI S, ZHENG Q Y, LV Y C, et al. High thermal conductivity in cubic boron arsenide crystals[J]. Science,2018,361(6402):579-581. DOI: 10.1126/science.aat8982.
                  [53] ZENG X L, SUN J J, YAO Y M, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano,2017,11(5):5167-5178. DOI: 10.1021/acsnano.7b02359.
                  [54] ZOU D X, HUANG X Y, ZHU Y K, et al. Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability[J]. Composites Science and Technology,2019,177:88-95. DOI: 10.1016/j.compscitech.2019.04.027.
                  [55] HE X H, WANG Y C. Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties[J]. Industrial & Engineering Chemistry Research,2020,59(5):1925-1933. DOI: 10.1021/acs.iecr.9b05939.
                  [56] GAO Y X, WANG X P, LIU J, et al. Investigation on the optimized binary and ternary gallium alloy as thermal interface materials[J]. Journal of Electronic Packaging,2017,139(1):011002. DOI: 10.1115/1.4035025.
                  [57] DAI W, LV L, MA T F, et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J]. Advanced Science,2021,8(7):2003734. DOI: 10.1002/advs.202003734.
                  [58] GWINN J P, WEBB R L. Performance and testing of thermal interface materials[J]. Microelectronics Journal,2003,34(3):215-222. DOI: 10.1016/S0026-2692(02)00191-X.
                  [59] SPONAGLE B, GROULX D. Measurement of thermal interface conductance at variable clamping pressures using a steady state method[J]. Applied Thermal Engineering,2016,96:671-681. DOI: 10.1016/j.applthermaleng.2015.12.010.
                  [60] ASTM. ASTM D5470-12 Standard test method for thermal transmission properties of thermally conductive electrical insulation materials[S]. ASTM,
                  [61] KEMPERS R, KOLODNER P, LYONS A, et al. A high-precision apparatus for the characterization of thermal interface materials[J]. The Review of Scientific Instruments,2009,80(9):095111. DOI: 10.1063/1.3193715.
                  [62] BURG B R, KOLLY M, BLASAKIS N, et al. Steady-state low thermal resistance characterization apparatus: the bulk thermal tester[J]. Review of Scientific Instruments,2015,86(12):124903. DOI: 10.1063/1.4936766.
                  [63] STREB F, SCHWEITZER D, MENGEL M, et al. Evaluation of characterization methods for solid thermal interface materials[C]//2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). San Jose, CA, USA: IEEE, 2017: 269-277.
                • 加载中
                图(5) / 表(1)
                计量
                • 文章访问数:  21
                • HTML全█文浏览量:  21
                • PDF下载量:  1
                • 被引次数: 0
                出版历程
                • 收稿日期:  2022-10-30
                • 修回日期:  2022-11-26
                • 网络出版日期:  2023-01-18

                目录

                  /

                  返回文章
                  返回