Research progress of microsystem packaging based on silicon carbide devices
-
摘要:
SiC由于其优越的材料性能,受到社会的广泛『关注. 传统器件的封装形式制约SiC器件优势的充分发挥,为了解决电、热及绝缘方面的问题,近年来出现了许∑ 多对碳化硅功率模块的新型封装技术和方案. 从SiC器件的模块微系统封装技术出发,对SiC器件的封装材料、模块封装结构、封装工艺和应用进行分类和总结,涵盖了提高耐高温能力、降低高频寄生电感、增强散热能力等一系列相关技术. 在此基础上,对SiC器件微系统所面▽临的科学挑战进行了总结,对相关技术的未来发展进行了展望.
Abstract:SiC has been widely concerned for its superior material properties. The packaging form of traditional devices restricts the full play of the advantages of SiC devices. To address the issue that the electrical, thermal and insulation performance, new packaging technologies and solutions for SiC devices have emerged in recent years. Based on the modular microsystem packaging technology of SiC devices, the packaging materials, module packaging structure, packaging technology and application of SiC devices are classified and summarized, covering a series of related technologies such as improving high-temperature resistance, reducing high-frequency parasitic inductance, and enhancing heat dissipation performance. Then the scientific challenges of silicon carbide devices are summarized. Finally, the future development trend of related technologies is prospected.
-
Key words:
- Silicon carbide /
- packaging material /
- module integration /
- packaging technology /
- microsystem
-
表 1 陶瓷基板主要【热、机械和电气性能对比
Table 1. Comparison of the main thermal, mechanical and electrical properties of ceramic substrates
特性 Si3N4 AlN Al2O3 BeO 介电常数 8~9 8~9 9~10 6~8 损耗因数 2×10?4 3×10?4 3×10?4
1×10?33×10?4 电阻率/(Ω·m) >1012 >1012 >1012 >1012 介电强度/(kV/mm) 10~25 14~35 10~35 27~31 导热系数/(W/m·K) 40~90 120~180 20~30 209~330 弯曲强度/(MPa) 600~900 250~350 300~380 ≥250 杨氏模量/(GPa) 200~300 300~320 300~370 330~400 断裂韧性/
(MPa·m1/2)4~7 2~3 3~5 1~2.5 热膨胀系数/
(mm/m·K)2.7~4.5 4.2~7 7~9 7~8.5 表 2 键合点♀结合强度控制标准
Table 2. Bonding point bond strength control standard
线径/μm 拉力/g 剪切力/g 125 >75 >200 200 >200 >400 250 >300 >600 300 >400 >1 000 375 >600 >1 200 50 >1 000 >2 000 -
[1] 谢芳娟, 谭菊华, 彭岚峰. 基于碳化硅功率器件的光伏逆变电路设计[J]. 电网与清「洁能源,2016,32(12):120-125. DOI: 10.3969/j.issn.1674-3814.2016.12.021.XIE F J, TAN J H, PENG L F. A design of PV inverter circuit based on SiC power device[J]. Power System and Clean Energy,2016,32(12):120-125. DOI: 10.3969/j.issn.1674-3814.2016.12.021. [2] 曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学ㄨ报,2017,37(1):221-232. DOI: 10.13334/j.0258-8013.pcsee.161063.ZENG Z, SHAO W H, HU B R, et al. Chances and challenges of photovoltaic inverters with silicon carbide devices[J]. Proceedings of the CSEE,2017,37(1):221-232. DOI: 10.13334/j.0258-8013.pcsee.161063. [3] FURUSHO Y, FUJII K. 1-MW solar power conditioning system with boost converter using all-SiC power module[C]//Proceedings of the CIPS 2016; 9th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEEE, 2016. [4] BREAZEALE L C, AYYANAR R. A photovoltaic array transformer-less inverter with film capacitors and silicon carbide transistors[J]. IEEE Transactions on Power Electronics,2015,30(3):1297-1305. DOI: 10.1109/TPEL.2014.2321760. [5] 王学梅. 宽禁带▆碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报,2014,34(3):371-379. DOI: 10.13334/j.0258-8013.pcsee.2014.03.007.WANG X M. Researches and applications of wide bandgap SiC power devices in electric vehicles[J]. Proceedings of the CSEE,2014,34(3):371-379. DOI: 10.13334/j.0258-8013.pcsee.2014.03.007. [6] 下山 拓紀. 应用碳化硅元件的新干线车辆主电路╲系统的开发[J]. 国外铁道车辆,2018,55(2):29-33. DOI: 10.3969/j.issn.1002-7610.2018.02.007. [7] 黄晓波, 陈敏, 朱楠, 等. 基于碳化硅器件的双馈风电变流器效率分析[J]. 电子电力技术,2014,48(11):45-47. DOI: 10.3969/j.issn.1000-100X.2014.11.016.HUANG X B, CHEN M, ZHU N, et al. Analysis of efficiency of SiC power electronics for doubly-fed wind power converter[J]. Power Electronics,2014,48(11):45-47. DOI: 10.3969/j.issn.1000-100X.2014.11.016. [8] TIAN W C, LI Z, WANG Y K, et al. Height uniformity simulation and experimental study of electroplating gold bump for 2.5D/3D integrated packaging[J]. Micromachines,2022,13(9):1537. DOI: 10.3390/mi13091537. [9] KHAZAKA R, MENDIZABAL L, HENRY D, et al. Survey of high-temperature reliability of power electronics packaging components[J]. IEEE Transactions on Power Electronics,2015,30(5):2456-2464. DOI: 10.1109/TPEL.2014.2357836. [10] LOCATELLI M L, KHAZAKA R, DIAHAM S, et al. Evaluation of encapsulation materials for high-temperature power device packaging[J]. IEEE Transactions on Power Electronics,2014,29(5):2281-2288. DOI: 10.1109/TPEL.2013.2279997. [11] KHAZAKA R, LOCATELLI M L, DIAHAM S, et al. Endurance of thin insulation polyimide films for high-temperature power module applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2013,3(5):811-817. DOI: 10.1109/TCPMT.2013.2249559. [12] DIAHAM S, LOCATELLI M L, VALDEZ-NAVA Z. Dielectrics for high temperature SiC device insulation: review of new polymeric and ceramic materials[M]//MUKHERJEE M. Silicon Carbide. IntechOpen, 2011. [13] COPPOLA L, HUFF D, WANG F, et al. Survey on high-temperature packaging materials for SiC-based power electronics modules[C]//Proceedings of 2017 IEEE Power Electronics Specialists Conference. Orlando: IEEE, 2007. [14] BROKAW W, ELMES J, GRUMMEL B, et al. Silicon carbide high-temperature packaging module fabrication[C]//Proceedings of the 1st IEEE Workshop on Wide Bandgap Power Devices and Applications. Columbus: IEEE, 2013. [15] MANIKAM V R, CHEONG K Y. Die attach materials for high temperature applications: a review[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2011,1(4):457-478. DOI: 10.1109/TCPMT.2010.2100432. [16] CHEN Z, YAO Y Y, BOROYEVICH D, et al. A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications[J]. IEEE Transactions on Power Electronics,2014,29(5):2307-2320. DOI: 10.1109/TPEL.2013.2283245. [17] WANG M, LUO F, XU L Y. A double-end sourced multi-chip improved wire-bonded SiC MOSFET power module design[C]//Proceedings of 2016 IEEE Applied Power Electronics Conference and Exposition. Long Beach: IEEE, 2016. [18] CHEN Z, YAO Y Y, BOROYEVICH D, et al. An ultra-fast SiC phase-leg module in modified hybrid packaging structure[C]//Proceedings of 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh: IEEE, 2014. [19] CHEN C, CHEN Y, LI Y X, et al. An SiC-based half-bridge module with an improved hybrid packaging method for high power density applications[J]. IEEE Transactions on Industrial Electronics,2017,64(11):8980-8991. DOI: 10.1109/TIE.2017.2723873. [20] NARAZAKI A, SHIRASAWA T, TAKAYAMA T, et al. Direct beam lead bonding for trench MOSFET & CSTBT[C]//Proceedings. ISPSD '05. the 17th International Symposium on Power Semiconductor Devices and ICs, 2005. Santa Barbara: IEEE, 2005. [21] BECKEDAHL P, BUETOW S, MAUL A, et al. 400 A, 1200 V SiC power module with 1nH commutation inductance[C]//Proceedings of the CIPS 2016; 9th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEE, 2016. [22] LIANG Z X, VAN WYK J D, LEE F C. Embedded power: a 3-D MCM integration technology for IPEM packaging application[J]. IEEE Transactions on Advanced Packaging,2006,29(3):504-512. DOI: 10.1109/tadvp.2006.879496. [23] HOU F Z, WANG W B, MA R, et al. Fan-out panel-level PCB-embedded SiC power MOSFETs packaging[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(1):367-380. DOI: 10.1109/JESTPE.2019.2952238. [24] WEIDNER K, KASPAR M, SELIGER N. Planar interconnect technology for power module system integration[C]//Proceedings of 2012 7th International Conference on Integrated Power Electronics Systems (CIPS). Nuremberg: IEEE, 2012. [25] ZHU N, MANTOOTH H A, XU D H, et al. A solution to press-pack packaging of SiC MOSFETs[J]. IEEE Transactions on Industrial Electronics,2017,64(10):8224-8234. DOI: 10.1109/TIE.2017.2686365. [26] TIAN W C, WANG C Q, ZHAO Z H, et al. Structures and materials of system-in-package: a review[J]. Recent Patents on Mechanical Engineering,2021,14(1):28-41. DOI: 10.2174/2212797613999200728190605. [27] 楚要钦, 张国强, 施辰光, 等. 一种小型々高集成度SiP模块设计[J]. 航空计算技术,2020,50(1):84-87. DOI: 10.3969/j.issn.1671-654X.2020.01.020.CHU Y Q, ZHANG G Q, SHI C G, et al. Design of a small high integration SiP module[J]. Aeronautical Computing Technique,2020,50(1):84-87. DOI: 10.3969/j.issn.1671-654X.2020.01.020. [28] MARCHESINI J L, JEANNIN P O, AVENAS Y, et al. Implementation and switching behavior of a PCB-DBC IGBT module based on the power chip-on-chip 3-D concept[J]. IEEE Transactions on Industry Applications,2017,53(1):362-370. DOI: 10.1109/TIA.2016.2604379. [29] HOU F Z, GUO X P, WANG Q D, et al. High power-density 3D integrated power supply module based on panel-level PCB embedded technology[C]//Proceedings of 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). San Diego: IEEE, 2018: 1365-1370. [30] MéNAGER L, SOUEIDAN M, ALLARD B, et al. A lab-scale alternative interconnection solution of semiconductor dice compatible with power modules 3-D integration[J]. IEEE Transactions on Power Electronics,2010,25(7):1667-1670. DOI: 10.1109/TPEL.2010.2041557. [31] MOUAWAD B, SOUEIDAN M, FABREGUE D, et al. Application of the spark plasma sintering technique to low-temperature copper bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2012,2(4):553-560. DOI: 10.1109/TCPMT.2012.2186453. [32] ROUGER N, WIDIEZ J, BENAISSA L, et al. 3D packaging for vertical power devices[C]//Proceedings of the CIPS 2014; 8th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEE, 2014. [33] SIMONOT T, CRÉBIER J C, ROUGER N, et al. 3D hybrid integration and functional interconnection of a power transistor and its gate driver[C]//Proceedings of 2010 IEEE Energy Conversion Congress and Exposition. Atlanta: IEEE, 2010. [34] KE J J, HUANG S, YUAN Z, et al. Investigation of low-profile, high-performance 62-mm SiC power module package[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(4):3850-3866. DOI: 10.1109/JESTPE.2020.2971623. [35] NING P Q, WANG F, NGO K D T. High-temperature SiC power module electrical evaluation procedure[J]. IEEE Transactions on Power Electronics,2011,26(11):3079-3083. DOI: 10.1109/TPEL.2011.2151879. [36] DOHNKE K O, GUTH K, HEUCK N. History and recent developments of packaging technology for SiC power devices[J]. Materials Science Forum,2016,858:1043-1048. DOI: 10.4028/www.scientific.net/MSF.858.1043. [37] 袁凤坡, 白欣娇, 李帅, 等. 封◥装工艺对SiC功率模块热电性能的影响[J]. 半导体技术,2019,44(9):712-716. DOI: 10.13290/j.cnki.bdtjs.2019.09.010.YUAN F P, BAI X J, LI S, et al. Influence of packaging process on thermoelectric properties of SiC power modules[J]. Semiconductor Technology,2019,44(9):712-716. DOI: 10.13290/j.cnki.bdtjs.2019.09.010. [38] 盛菊仪, 徐冠捷. 无铅回流焊工艺及设备[J]. 电子工艺技术⊙,2004,25(2):60-63. DOI: 10.3969/j.issn.1001-3474.2004.02.003.SHENG J Y, XU G J. Reflow technology and equipment in the lead-free assembly[J]. Electronics Process Technology,2004,25(2):60-63. DOI: 10.3969/j.issn.1001-3474.2004.02.003. [39] 徐文辉, 陈云, 王立. SiC混合功率模块封装工艺╱[J]. 电子与封装,2016,16(3):1-3. DOI: 10.16257/j.cnki.1681-1070.2016.0027.XU W H, CHEN Y, WANG L. Packaging process of SiC hybrid power module[J]. Electronics & Packaging,2016,16(3):1-3. DOI: 10.16257/j.cnki.1681-1070.2016.0027. [40] 李元升. 引线键合机工艺技术分析[J]. 电子工业专用设备,2004,33(3):78-81. DOI: 10.3969/j.issn.1004-4507.2004.03.022.LI Y S. Technology analysis of wire bonder[J]. Equipment for Electronic Products Manufacturing,2004,33(3):78-81. DOI: 10.3969/j.issn.1004-4507.2004.03.022. [41] SCHMIDT R, K?NIG C, PRENOSIL P. Novel wire bond material for advanced power module packages[J]. Microelectronics Reliability,2012,52(9-10):2283-2288. DOI: 10.1016/j.microrel.2012.06.139. [42] BOETTGE B, NAUMANN F, KLENGEL R, et al. Packaging material issues in high temperature power electronics[C]//Proceedings of 2013 Eurpoean Microelectronics Packaging Conference (EMPC). Grenoble: IEEE, 2013. [43] MARENCO N, KONTEK M, REINERT W, et al. Copper ribbon bonding for power electronics applications[C]//Proceedings of 2013 Eurpoean Microelectronics Packaging Conference. Grenoble: IEEE, 2013. [44] ZHANG Y F, HAMMAM T, BELOV I, et al. Thermomechanical analysis and characterization of a press-pack structure for SiC power module packaging applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2017,7(7):1089-1100. DOI: 10.1109/TCPMT.2017.2711272. [45] ZHU Q W, FORSYTH A, TODD R, et al. Thermal characterisation of a copper-clip-bonded IGBT module with double-sided cooling[C]//Proceedings of the 23rd International Workshop on Thermal Investigations of ICs and Systems. Amsterdam: IEEE, 2017: 1-6. [46] 开翠红, 王蓉, 杨德仁, 等. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报,2021,50(9):1780-1795. DOI: 10.3969/j.issn.1000-985X.2021.09.023.KAI C H, WANG R, YANG D R, et al. Epitaxy of wide bandgap semiconductors on silicon carbide substrate[J]. Journal of Synthetic Crystals,2021,50(9):1780-1795. DOI: 10.3969/j.issn.1000-985X.2021.09.023. -