--> -->

  • <tr id='SVaOrx'><strong id='SVaOrx'></strong><small id='SVaOrx'></small><button id='SVaOrx'></button><li id='SVaOrx'><noscript id='SVaOrx'><big id='SVaOrx'></big><dt id='SVaOrx'></dt></noscript></li></tr><ol id='SVaOrx'><option id='SVaOrx'><table id='SVaOrx'><blockquote id='SVaOrx'><tbody id='SVaOrx'></tbody></blockquote></table></option></ol><u id='SVaOrx'></u><kbd id='SVaOrx'><kbd id='SVaOrx'></kbd></kbd>

    <code id='SVaOrx'><strong id='SVaOrx'></strong></code>

    <fieldset id='SVaOrx'></fieldset>
          <span id='SVaOrx'></span>

              <ins id='SVaOrx'></ins>
              <acronym id='SVaOrx'><em id='SVaOrx'></em><td id='SVaOrx'><div id='SVaOrx'></div></td></acronym><address id='SVaOrx'><big id='SVaOrx'><big id='SVaOrx'></big><legend id='SVaOrx'></legend></big></address>

              <i id='SVaOrx'><div id='SVaOrx'><ins id='SVaOrx'></ins></div></i>
              <i id='SVaOrx'></i>
            1. <dl id='SVaOrx'></dl>
              1. <blockquote id='SVaOrx'><q id='SVaOrx'><noscript id='SVaOrx'></noscript><dt id='SVaOrx'></dt></q></blockquote><noframes id='SVaOrx'><i id='SVaOrx'></i>
                • 北大核心期刊(《中文核心期刊要目总览》2017版)
                • 中国科技核心期刊(中国科技论文统计〓源期刊)
                • JST 日本科学技术振兴机构数据库(日)收录期刊

                留言板

                尊敬的读者、作者、审稿人, 关于本☆刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢↓您的支持!

                姓名
                邮箱
                手机号码
                标题
                留言内容
                验证码

                基于碳化硅器件微系统封装研究进展

                田文超 钱莹莹 赵静榕 李昭 李彬

                田文超,钱莹莹,赵静榕,等.基于碳化硅器件微系统封装研究进展[J]. 微电子学与计算机,2023,40(1):50-63 doi: 10.19304/J.ISSN1000-7180.2022.0717
                引用本文: 田文超,钱莹莹,赵静榕,等.基于碳化硅器件微系统封装研究进展[J]. 微电子学与计算机,2023,40(1):50-63 doi: 10.19304/J.ISSN1000-7180.2022.0717
                TIAN W C,QIAN Y Y,ZHAO J R,et al. Research progress of microsystem packaging based on silicon carbide devices[J]. Microelectronics & Computer,2023,40(1):50-63 doi: 10.19304/J.ISSN1000-7180.2022.0717
                Citation: TIAN W C,QIAN Y Y,ZHAO J R,et al. Research progress of microsystem packaging based on silicon carbide devices[J]. Microelectronics & Computer,2023,40(1):50-63 doi: 10.19304/J.ISSN1000-7180.2022.0717

                基于碳化硅器件微系统封装研究进展

                doi: 10.19304/J.ISSN1000-7180.2022.0717
                基金项目: 国家自然科学基金项目(51805400);西安电子科技大学教育教学改革研究项︼目资助(B21011)
                详细信息
                  作者简介:

                  田文超:男,(1968-),博士,教授. 研究方向为先进封装与高密度组装、微机电技术

                  钱莹莹:女,(1997-),硕士研究生.研究方向为电子封装技术. E-mail:1397735326@qq.com

                  赵静榕:女,(1989-),硕士研究生.研究Ψ 方向为材料可靠性

                  李昭:男,(1996-),博士研究生.研究方向为电子封装及可靠性

                  李彬:男,(1997-),硕士研究生. 研究方向电子封装及可靠性

                • 中图分类号: TN453

                Research progress of microsystem packaging based on silicon carbide devices

                • 摘要:

                  SiC由于其优越的材料性能,受到社会的广泛关注. 传统器件的封装形式制约SiC器件优势的充分发挥,为了解决电、热及绝缘方面的问题,近年来出现了许多对碳化硅功率模块的新型封装技术和方案. 从SiC器件的模块微系统封装技术出发,对SiC器件的封装材料、模块封装结构、封装工艺和应用进行分类和总结,涵盖了提高耐高温能力、降低高频寄生电感、增强散热能力等一系列相关技术. 在此基础上,对SiC器件微系统所面临的科学挑战进行了总结,对相关技术的未来发展进行了展望.

                   

                • 图 1  铝铜复合带键合

                  Figure 1.  Aluminum-copper composite band bonding

                  图 2  SiC模块的优化设计

                  Figure 2.  Optimized design of SiC modules

                  图 3  “双端源”功率模块结构

                  Figure 3.  Double-End sourced power module construction

                  图 4  混合包装结构示意图

                  Figure 4.  Hybrid packaging structure

                  图 5  DLB结构

                  Figure 5.  Direct lead bonding structure

                  图 6  SKiN结构

                  Figure 6.  SKiN structure

                  图 7  陶瓷嵌入式的电源模块结构

                  Figure 7.  Structural schematic of ceramic embedded power module

                  图 8  PCB嵌入式SiC MOSFET封装结构示意图

                  Figure 8.  Structure schematic of the PCB-embedded SiC MOSFETs package

                  图 9  SiPLIT结构

                  Figure 9.  SiPLIT structure

                  图 10  2.5D模块封装结构

                  Figure 10.  2.5D module packaging structure

                  图 11  PCoC封装结构

                  Figure 11.  Power Chip-on-Chip structure

                  图 12  PCoI封装结构示意图

                  Figure 12.  Power Chip-on-Inductor structure

                  图 13  Cu微柱封装结构示意图

                  Figure 13.  Schematic of Cu micro-post interconnection

                  图 14  晶圆级直接键合工艺

                  Figure 14.  Wafer-level packaging

                  图 15  电源模块图

                  Figure 15.  Power module diagram

                  图 16  电源设备和栅极驱动器之间的TSV互联可能性

                  Figure 16.  TSV interconnection possibilities between the power device and gate drivers

                  图 17  SiC电源模块的装配工艺流程

                  Figure 17.  Fabrication and assembly flow of the proposed SiC power module

                  图 18  典型电源模块设计

                  Figure 18.  Typical power module structure

                  图 19  铝线键合外观

                  Figure 19.  Aluminum wire bonding

                  图 20  铜与铝带键合和铜线键合

                  Figure 20.  Copper bonded with Aluminum strip and Copper wire bonding

                  图 21  IGBT压焊结构示意图

                  Figure 21.  Internal construction of a press-pack IGBT

                  图 22  铜夹焊封装结构

                  Figure 22.  Structure diagram of Cu clip bonding package

                  表  1  陶瓷基板主要热、机械和电气性能对比

                  Table  1.   Comparison of the main thermal, mechanical and electrical properties of ceramic substrates

                  特性Si3N4AlNAl2O3BeO
                  介电常数8~98~99~106~8
                  损耗因数2×10?43×10?43×10?4
                  1×10?3
                  3×10?4
                  电阻率/(Ω·m)>1012>1012>1012>1012
                  介电强度/(kV/mm)10~2514~3510~3527~31
                  导热系数/(W/m·K)40~90120~18020~30209~330
                  弯曲强度/(MPa)600~900250~350300~380≥250
                  杨氏模量/(GPa)200~300300~320300~370330~400
                  断裂韧性/
                  (MPa·m1/2
                  4~72~33~51~2.5
                  热膨胀系数/
                  (mm/m·K)
                  2.7~4.54.2~77~97~8.5
                  下载: 导出CSV

                  表  2  键合点结合强度控制标准

                  Table  2.   Bonding point bond strength control standard

                  线径/μm拉力/g剪切力/g
                  125>75>200
                  200>200>400
                  250>300>600
                  300>400>1 000
                  375>600>1 200
                  50>1 000>2 000
                  下载: 导出CSV
                • [1] 谢芳娟, 谭菊华, 彭岚峰. 基于碳化硅功率器件的光伏逆变电路设计[J]. 电网与清洁能源,2016,32(12):120-125. DOI: 10.3969/j.issn.1674-3814.2016.12.021.

                  XIE F J, TAN J H, PENG L F. A design of PV inverter circuit based on SiC power device[J]. Power System and Clean Energy,2016,32(12):120-125. DOI: 10.3969/j.issn.1674-3814.2016.12.021.
                  [2] 曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学报,2017,37(1):221-232. DOI: 10.13334/j.0258-8013.pcsee.161063.

                  ZENG Z, SHAO W H, HU B R, et al. Chances and challenges of photovoltaic inverters with silicon carbide devices[J]. Proceedings of the CSEE,2017,37(1):221-232. DOI: 10.13334/j.0258-8013.pcsee.161063.
                  [3] FURUSHO Y, FUJII K. 1-MW solar power conditioning system with boost converter using all-SiC power module[C]//Proceedings of the CIPS 2016; 9th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEEE, 2016.
                  [4] BREAZEALE L C, AYYANAR R. A photovoltaic array transformer-less inverter with film capacitors and silicon carbide transistors[J]. IEEE Transactions on Power Electronics,2015,30(3):1297-1305. DOI: 10.1109/TPEL.2014.2321760.
                  [5] 王学梅. 宽禁带碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报,2014,34(3):371-379. DOI: 10.13334/j.0258-8013.pcsee.2014.03.007.

                  WANG X M. Researches and applications of wide bandgap SiC power devices in electric vehicles[J]. Proceedings of the CSEE,2014,34(3):371-379. DOI: 10.13334/j.0258-8013.pcsee.2014.03.007.
                  [6] 下山 拓紀. 应用碳化硅元件的新干线车辆主电路系统的开发[J]. 国外铁道车辆,2018,55(2):29-33. DOI: 10.3969/j.issn.1002-7610.2018.02.007.
                  [7] 黄晓波, 陈敏, 朱楠, 等. 基于碳化硅器件的双馈风电变流器效率分析[J]. 电子电力技术,2014,48(11):45-47. DOI: 10.3969/j.issn.1000-100X.2014.11.016.

                  HUANG X B, CHEN M, ZHU N, et al. Analysis of efficiency of SiC power electronics for doubly-fed wind power converter[J]. Power Electronics,2014,48(11):45-47. DOI: 10.3969/j.issn.1000-100X.2014.11.016.
                  [8] TIAN W C, LI Z, WANG Y K, et al. Height uniformity simulation and experimental study of electroplating gold bump for 2.5D/3D integrated packaging[J]. Micromachines,2022,13(9):1537. DOI: 10.3390/mi13091537.
                  [9] KHAZAKA R, MENDIZABAL L, HENRY D, et al. Survey of high-temperature reliability of power electronics packaging components[J]. IEEE Transactions on Power Electronics,2015,30(5):2456-2464. DOI: 10.1109/TPEL.2014.2357836.
                  [10] LOCATELLI M L, KHAZAKA R, DIAHAM S, et al. Evaluation of encapsulation materials for high-temperature power device packaging[J]. IEEE Transactions on Power Electronics,2014,29(5):2281-2288. DOI: 10.1109/TPEL.2013.2279997.
                  [11] KHAZAKA R, LOCATELLI M L, DIAHAM S, et al. Endurance of thin insulation polyimide films for high-temperature power module applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2013,3(5):811-817. DOI: 10.1109/TCPMT.2013.2249559.
                  [12] DIAHAM S, LOCATELLI M L, VALDEZ-NAVA Z. Dielectrics for high temperature SiC device insulation: review of new polymeric and ceramic materials[M]//MUKHERJEE M. Silicon Carbide. IntechOpen, 2011.
                  [13] COPPOLA L, HUFF D, WANG F, et al. Survey on high-temperature packaging materials for SiC-based power electronics modules[C]//Proceedings of 2017 IEEE Power Electronics Specialists Conference. Orlando: IEEE, 2007.
                  [14] BROKAW W, ELMES J, GRUMMEL B, et al. Silicon carbide high-temperature packaging module fabrication[C]//Proceedings of the 1st IEEE Workshop on Wide Bandgap Power Devices and Applications. Columbus: IEEE, 2013.
                  [15] MANIKAM V R, CHEONG K Y. Die attach materials for high temperature applications: a review[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2011,1(4):457-478. DOI: 10.1109/TCPMT.2010.2100432.
                  [16] CHEN Z, YAO Y Y, BOROYEVICH D, et al. A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications[J]. IEEE Transactions on Power Electronics,2014,29(5):2307-2320. DOI: 10.1109/TPEL.2013.2283245.
                  [17] WANG M, LUO F, XU L Y. A double-end sourced multi-chip improved wire-bonded SiC MOSFET power module design[C]//Proceedings of 2016 IEEE Applied Power Electronics Conference and Exposition. Long Beach: IEEE, 2016.
                  [18] CHEN Z, YAO Y Y, BOROYEVICH D, et al. An ultra-fast SiC phase-leg module in modified hybrid packaging structure[C]//Proceedings of 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Pittsburgh: IEEE, 2014.
                  [19] CHEN C, CHEN Y, LI Y X, et al. An SiC-based half-bridge module with an improved hybrid packaging method for high power density applications[J]. IEEE Transactions on Industrial Electronics,2017,64(11):8980-8991. DOI: 10.1109/TIE.2017.2723873.
                  [20] NARAZAKI A, SHIRASAWA T, TAKAYAMA T, et al. Direct beam lead bonding for trench MOSFET & CSTBT[C]//Proceedings. ISPSD '05. the 17th International Symposium on Power Semiconductor Devices and ICs, 2005. Santa Barbara: IEEE, 2005.
                  [21] BECKEDAHL P, BUETOW S, MAUL A, et al. 400 A, 1200 V SiC power module with 1nH commutation inductance[C]//Proceedings of the CIPS 2016; 9th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEE, 2016.
                  [22] LIANG Z X, VAN WYK J D, LEE F C. Embedded power: a 3-D MCM integration technology for IPEM packaging application[J]. IEEE Transactions on Advanced Packaging,2006,29(3):504-512. DOI: 10.1109/tadvp.2006.879496.
                  [23] HOU F Z, WANG W B, MA R, et al. Fan-out panel-level PCB-embedded SiC power MOSFETs packaging[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(1):367-380. DOI: 10.1109/JESTPE.2019.2952238.
                  [24] WEIDNER K, KASPAR M, SELIGER N. Planar interconnect technology for power module system integration[C]//Proceedings of 2012 7th International Conference on Integrated Power Electronics Systems (CIPS). Nuremberg: IEEE, 2012.
                  [25] ZHU N, MANTOOTH H A, XU D H, et al. A solution to press-pack packaging of SiC MOSFETs[J]. IEEE Transactions on Industrial Electronics,2017,64(10):8224-8234. DOI: 10.1109/TIE.2017.2686365.
                  [26] TIAN W C, WANG C Q, ZHAO Z H, et al. Structures and materials of system-in-package: a review[J]. Recent Patents on Mechanical Engineering,2021,14(1):28-41. DOI: 10.2174/2212797613999200728190605.
                  [27] 楚要钦, 张国强, 施辰光, 等. 一种小型高集成度SiP模块设计[J]. 航空计算技术,2020,50(1):84-87. DOI: 10.3969/j.issn.1671-654X.2020.01.020.

                  CHU Y Q, ZHANG G Q, SHI C G, et al. Design of a small high integration SiP module[J]. Aeronautical Computing Technique,2020,50(1):84-87. DOI: 10.3969/j.issn.1671-654X.2020.01.020.
                  [28] MARCHESINI J L, JEANNIN P O, AVENAS Y, et al. Implementation and switching behavior of a PCB-DBC IGBT module based on the power chip-on-chip 3-D concept[J]. IEEE Transactions on Industry Applications,2017,53(1):362-370. DOI: 10.1109/TIA.2016.2604379.
                  [29] HOU F Z, GUO X P, WANG Q D, et al. High power-density 3D integrated power supply module based on panel-level PCB embedded technology[C]//Proceedings of 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). San Diego: IEEE, 2018: 1365-1370.
                  [30] MéNAGER L, SOUEIDAN M, ALLARD B, et al. A lab-scale alternative interconnection solution of semiconductor dice compatible with power modules 3-D integration[J]. IEEE Transactions on Power Electronics,2010,25(7):1667-1670. DOI: 10.1109/TPEL.2010.2041557.
                  [31] MOUAWAD B, SOUEIDAN M, FABREGUE D, et al. Application of the spark plasma sintering technique to low-temperature copper bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2012,2(4):553-560. DOI: 10.1109/TCPMT.2012.2186453.
                  [32] ROUGER N, WIDIEZ J, BENAISSA L, et al. 3D packaging for vertical power devices[C]//Proceedings of the CIPS 2014; 8th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEE, 2014.
                  [33] SIMONOT T, CRÉBIER J C, ROUGER N, et al. 3D hybrid integration and functional interconnection of a power transistor and its gate driver[C]//Proceedings of 2010 IEEE Energy Conversion Congress and Exposition. Atlanta: IEEE, 2010.
                  [34] KE J J, HUANG S, YUAN Z, et al. Investigation of low-profile, high-performance 62-mm SiC power module package[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(4):3850-3866. DOI: 10.1109/JESTPE.2020.2971623.
                  [35] NING P Q, WANG F, NGO K D T. High-temperature SiC power module electrical evaluation procedure[J]. IEEE Transactions on Power Electronics,2011,26(11):3079-3083. DOI: 10.1109/TPEL.2011.2151879.
                  [36] DOHNKE K O, GUTH K, HEUCK N. History and recent developments of packaging technology for SiC power devices[J]. Materials Science Forum,2016,858:1043-1048. DOI: 10.4028/www.scientific.net/MSF.858.1043.
                  [37] 袁凤坡, 白欣娇, 李帅, 等. 封装工艺对SiC功率模块热电性能的影响[J]. 半导体技术,2019,44(9):712-716. DOI: 10.13290/j.cnki.bdtjs.2019.09.010.

                  YUAN F P, BAI X J, LI S, et al. Influence of packaging process on thermoelectric properties of SiC power modules[J]. Semiconductor Technology,2019,44(9):712-716. DOI: 10.13290/j.cnki.bdtjs.2019.09.010.
                  [38] 盛菊仪, 徐冠捷. 无铅回流焊工艺及设备[J]. 电子工艺技术,2004,25(2):60-63. DOI: 10.3969/j.issn.1001-3474.2004.02.003.

                  SHENG J Y, XU G J. Reflow technology and equipment in the lead-free assembly[J]. Electronics Process Technology,2004,25(2):60-63. DOI: 10.3969/j.issn.1001-3474.2004.02.003.
                  [39] 徐文辉, 陈云, 王立. SiC混合功率模块封装工艺[J]. 电子与封装,2016,16(3):1-3. DOI: 10.16257/j.cnki.1681-1070.2016.0027.

                  XU W H, CHEN Y, WANG L. Packaging process of SiC hybrid power module[J]. Electronics & Packaging,2016,16(3):1-3. DOI: 10.16257/j.cnki.1681-1070.2016.0027.
                  [40] 李元升. 引线键合机工艺技术分析[J]. 电子工业专用设备,2004,33(3):78-81. DOI: 10.3969/j.issn.1004-4507.2004.03.022.

                  LI Y S. Technology analysis of wire bonder[J]. Equipment for Electronic Products Manufacturing,2004,33(3):78-81. DOI: 10.3969/j.issn.1004-4507.2004.03.022.
                  [41] SCHMIDT R, K?NIG C, PRENOSIL P. Novel wire bond material for advanced power module packages[J]. Microelectronics Reliability,2012,52(9-10):2283-2288. DOI: 10.1016/j.microrel.2012.06.139.
                  [42] BOETTGE B, NAUMANN F, KLENGEL R, et al. Packaging material issues in high temperature power electronics[C]//Proceedings of 2013 Eurpoean Microelectronics Packaging Conference (EMPC). Grenoble: IEEE, 2013.
                  [43] MARENCO N, KONTEK M, REINERT W, et al. Copper ribbon bonding for power electronics applications[C]//Proceedings of 2013 Eurpoean Microelectronics Packaging Conference. Grenoble: IEEE, 2013.
                  [44] ZHANG Y F, HAMMAM T, BELOV I, et al. Thermomechanical analysis and characterization of a press-pack structure for SiC power module packaging applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2017,7(7):1089-1100. DOI: 10.1109/TCPMT.2017.2711272.
                  [45] ZHU Q W, FORSYTH A, TODD R, et al. Thermal characterisation of a copper-clip-bonded IGBT module with double-sided cooling[C]//Proceedings of the 23rd International Workshop on Thermal Investigations of ICs and Systems. Amsterdam: IEEE, 2017: 1-6.
                  [46] 开翠红, 王蓉, 杨德仁, 等. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学●报,2021,50(9):1780-1795. DOI: 10.3969/j.issn.1000-985X.2021.09.023.

                  KAI C H, WANG R, YANG D R, et al. Epitaxy of wide bandgap semiconductors on silicon carbide substrate[J]. Journal of Synthetic Crystals,2021,50(9):1780-1795. DOI: 10.3969/j.issn.1000-985X.2021.09.023.
                • 加载中
                图(22) / 表(2)
                计量
                • 文章访问数:  15
                • HTML全文浏览量:  15
                • PDF下载量:  1
                • 被引次数: 0
                出版历程
                • 收稿日期:  2022-11-09
                • 修回日期:  2022-11-30
                • 网络出版日期:  2023-01-18

                目录

                  /

                  返回文章
                  返回